
rouramming I Design
Missing Values:
Why False Logic

. Endangers Relational
Database ·

· GUI Builder Tools:
The Lowdown on

Hot Products

From Centralized
to Distributed:

Rethinking Datibase
· Administration ---

Repository~~
Standards Revisited

~I
1 2

DECEMBER 1993 ·; _~ .
$3.95

o 71896 4 946 J $"95 C•"'dlao

I I I I I I I I I I I I I I I I I
BY DAVID McGOVERAN

Success of relational database is endangered by a misunderstanding of its
true foundation-the ageless logic behind the relational model

. , •

from
•

(Or, What's Logic
Got to Do

~E RELATIONAL
.J. ~odel may not be

dead, but it suffers from incapaci
tating wounds at the hands of
database vendors, standards, and
benchmark committees (not neces
sarily distinct from vendors), and
"experts" who insist on explaining
what they never bothered to un
derstand. Of course, not all the
blame can be laid on these inno
cents; despite the genius of many
of his insights, Dr. E. F. Codd must
take some responsibility for the
confusion that surrounds relation
al model issues-in particular, the

With It?)
·,mjillit

confusion over many-valued logics .
This article is Part I of a four

part series. The series addresses a
crisis (and a scandal) of the relational
model: the use of many-valued
logic as a mechanism for handling
missing information. Before. em
barking on our journey into the
problems with many-valued logic,
it is necessary to consider what a
logical system is and how it relates
to DBMS implementation. The goal
of Part I is to provide a founda
tional knowledge of logic for data
base uses.

Part II will use the terminol-

DATABASE PROGRAMMING & DESIGN
33

ogy defined here to explain why
many-valued logic approaches are
not appropriate for practical data
base use. Part III will examine the
pragmatic motivations that compel
database designers to use "nulls,"
or any other indicator of missing
information.1 Therefore, we are
left with a conundrum: If many
valued logics are inappropriate for ~
handling missing information, and ~
database designers have legitimate t
reasons for wanting to represent a
this missing information, what can ~
we use in place of many-valued §
logic? Part Ill sets the stage for- ~

and Part IV provides-a compre
hensive answer to this question,
with practical solutions for the
most common situations in which
nulls appear in current database
implementations.

This series is neither as for
mal or complete as I would like to
make it. I must pass over known
issues due to space limitations; I
am also certain that formal issues
and developments exist of which I
am unaware. Nonetheless, I have
tried to assure myself (through ex
tensive research and study) that the
discussion of key issues is accurate,
and that the reader will be pre
pared to understand the essential
problems associated with real-world
database use of many-valued log
ics discussed in Part II. The con
cepts are difficult: Be patient; take
it in carefully and slowly.

DBMS GOALS
A DBMS should provide share
able, reusable, and efficient ser
vices for the definition, capture,
organization, and manipulation of
data. The DBMS should do it in a
way that ensures the data's integri
ty, regardless of user actions or
system failures. An additional goal
drives much of what differentiates
a relational DBMS (RDBMS) from
other DBMSs: Changes to the data
should not require changes to ap
plications, and vice-versa. Adher
ence to this goal minimizes the
amount of code that must be writ
ten for a given application, and re
duces application maintenance.
Curiously, however, this goal is
often forgotten. This goal has had
a strong impact on the features
needed in an RDBMS.

If applications are to be inde
pendent of data organization and
access methods, the data definition
and manipulation language must
be declarative (or "nonprocedural").
Otherwise, a change to organiza
tion or access methods (such as
those required as the database
grows or is optimized for perfor
mance) will require a compensat
ing change in the application. In
addition, much of the data access
code found in structured applica
tions involves sorting and select
ing data, typically using numerous
control loops. If this code can be
moved out of individual applica
tions and shared by all applications,

I I I I I I I I I I I I I I I I I

Vocabulary:
• Variables: any legal SOL truth-valued. expression (for example, "colA >
colB")
• Grouping indicators: "(", ")"
•Truth values: "TRUE," "UNKNOWN," "FALSE"
• Connectives: "NOT," "AND," "OR" (defined for two-valued logic)

Formation Rules:
•The rules for creating syntactically correct SELECTs (and, by extension,
syntactically correct INSERTS, DELETEs, and UPDATEs).

Axioms:
• No expllclt axioms, although each row in the database may be consid
ered an axiom.

Rules of Inference:
•A restricted rule of substitution; equivalent expressions may generally
be substituted, one tor the other, and a subquery may appear in place of
certain .expressions.

FIGlllE t SQL (without nulls) as a logical system. Loosely speaking, we can consider
SQL a logical system.

we gain in areas of performance op
timization and maintenance. How
ever, if applications developers
must choose from several data ac
cess routines, the gains will not be
very large. For example, having
one data access routine for each
data structure would defeat the
purpose.

This situation suggests that
we should minimize the number
of distinct data access routines, at
least as seen by applications. There
fore, we need a special language
(the data sub language or "query
language") using the smallest
number of operations. At odds
with this goal is the concern that
the language be capable of ex
pressing every possible request for
the intended set of applications
(including ad hoc queries, unim
plemented applications, and more).
This latter concept is known formal
ly as expressive completeness.

Another obstacle to minimiz
ing data access routines is that the
most efficient access method does
depend on physical data organiza
tion. Thus, the question is: How
can we map a few data access rou
tines to the possibly many rou
tines, each optimized for the actu
al organization and type of data
being accessed? The answer is auto
matic data access code optimiz
ation. Such optimization requires
knowledge of data's physical orga
nization. And if the database is
changing rapidly, this knowledge
must be up-to-the-minute. So,
where in a business system's struc-

DECEMBER 1993
34

ture is this information available?
Where should shared data access
code be maintained, and where
should this ·optimization take
place? The obvious answer is: in
the DBMS.

This line of argument leads
us to a fundamental problem: Which
algorithms should the DBMS opti
mizer (the code that performs opti
mization) use? Techniques used by
compilers for procedural code op
timization are relatively straight
forward; for the most part, they do
not alter the algorithm as it was
coded by the developer. We need
a different kind of optimization,
one that substitutes an equivalent
but more efficient algorithm (a
data access method) for a standard
data access routine. This concept
implies that the optimizer is able
to identify algorithm equivalence
and evaluate the relative cost of
the available algorithms; it must
have provably correct rules by
which it determines algorithm
equivalence.

FORMAL LOGICAL SYSTEM
All of these considerations lead us
to one conclusion: The query lan
guage should be an implementa
tion of a formal logical system. To
understand what is possible, let's
briefly examine the components
and properties of formal logical
systems.

We must begin with some
definitions, which will be used ex
tensively as we go on. A logical
system consists of four types of ob-

jects (see Figure 1):
D Vocabulary. A collection of

symbols used unambiguously to
represent truth-valued variables
(such as "P," "Q," and "x"), group
ing indicators (such as"(",")", and
"!"), truth values ("T" for true or
"F" for false), and connectives
(such as "OR," "AND," and "NOT").

D A collection of formation
rules for governing the creation of
"well-formed formulas" (wffs
pronounced "wiffs").

D A collection of axioms. The
set of wffs that is given initially,
each of which is guaranteed to be
"true." Ideally, the axioms should
all be independent; that is, it will
not be possible to prove any given
axiom from the others.

D A collection of rules of in
ference (also called deductions) by
which a new wff may be derived
from existing wffs. This new wff is
called a theorem. A finite sequence
of wffs, each of which is either an
axiom or can be inferred from an
earlier wff via a rule of inference,
is called a proof and, in particular,
is a proof of the final wff.

The definition of a logical
system is meant to be applied in a
purely mechanical fashion: that is,
the process of determining wheth
er an object (expression) belongs
to the vocabulary, is a wff, or is an
axiom, cannot be based on judg
ment or on the outcome of some
random event. Determining wheth
er or not a rule of inference has
been properly applied must also
be purely mechanical.

The connectives are often de
fined in terms of truth tables. A
truth table is a tabular represent
ation of a formation rule and, pos
sibly, certain rules of inference
that specify the compound's truth
value, given the components'
truth values (see Figure 2). We say
that a set of connectives is indepen
dent if it is not possible to express
the truth table for any given con
nective in terms of the truth tables
for the other connectives. For ex
ample, the set of truth tables con
sisting of the SQL connectives and
the connective (shown in Figure 3)
called material implication is not in
dependent, since material implica
tion has the same truth table as
"(NOT P) OR Q." Readers can show this
fact by substitution using the truth
tables in Figure 2 for "NOT" and

i I I I I I i i I I I I I I I I
"OR." In fact, /1 AND," "OR," and "NOT"
also fail the test of independence
(see the exercises at the end of the
article).

When the truth value of a
wff can be evaluated in a mechani
cal manner from the truth values
of its components, a logical system
is said to be truth functional. We
will use this important concept
later.

Each possible choice for the
objects that make up a logical sys
tem results in a different logical
system. We could show some logi
cal systems to be equivalent in
some sense, but only in trivial
cases (usually involving differences
of representation-for example, if
Greek letters are used in place of
English for symbols, or if we swap
the identification of axioms and

AND OR

P\QI T F

T T T
F T F

NOT

FIGURE 2. Two-valued truth tables for
SQL connectives.

1111'1..IES

P\Qj T F

T T F
F T T

BI-Ilil'l..IES

ff:
F

F
T

FIGURE 3. Two-valued material implica
tion and material equivalence. Note that
these are not directly supported in SQL!

theorems). Not all logical systems
are equally powerful. For a par
ticular logical system, a rule that
assigns a truth value to every
truth-valued variable in a set of
wffs is called an interpretation of
that set of wffs. The following is
an example of an interpretation:

Given wffs: "P AND Q," "P OR Q"
Truth value assignments: "P" is "TRUE," "Q" is
"FALSE"

Note that in some logical systems
(including, in particular, the sys
tem supposedly underlying SQL),
a wff may consist of truth-valued
expressions containing variables that
are not themselves truth-valued,
but whose assigned values imply
the truth or falsity of the expres
sion. The interpretation of such

DATABASE PROGRAMMING & DESIGN
35

expressions then includes the val
ues assigned to these non-truth
valued variables.

For example, a relational ta
ble (simply "table" hereafter) de
fines a truth-valued expression,
with each column representing a
variable. Consider the Suppliers ta
ble of the familiar Parts-Suppliers
database. The table consists of a
supplier number (S#), a supplier
name (SNA!lt£), a status (STATUS), and a
city location (CITY), and defines the
expression: "There exists a supplier with S#
= w AND SNAME = x AND STATUS = y AND
CITY = z, where w, x, y, and z are variables."
The row <'Sl','Smith','20','London'> ap
pearing in the table represents the
expression, with these values sub
stituted for w, x, y, and z, respec
tively. If values for w, x, y, and z
are substituted in the expression
and these values actually appear as
a row in the table, the expression
is said to evaluate to TRUE. Other
wise, it must evaluate to FALSE.

Perhaps the most familiar
logical system is the (two-valued)
propositional calculus. This system
treats each variable as a proposi
tion that must be evaluated inde
pendently of all others, and each
such variable can be assigned ex
actly one value in a proof. The usu
al set of independent connectives
consists of the familiar /1 AND", "ffi'',
and "NOT", with "MUS'' (implication)
and "Bl-ft1PLES" (truth-value equiv
alence)2 being defined in terms of
these base connectives in a man
ner called material implication and
material equivalence (see Figure 3).
Among its rules of inference are:

D The rule of substitution
(given Q Bl-lMPLES R and P IMPLES Q, the
rule of substitution tells us that "P
IMPLIES R'')

D The rule of modus ponens (if
P IMPLES Q is true and "P" is true,
then "Q" is true).

A logical system is generally
intended for some practical use.
For convenience, we will say that
our understanding of the subject
of that practical use (for example
accounting) is an informal theory
(that is, some informal set of rules,
requirements, descriptions, and so
forth) regarding the particular sub
ject or process. The informal the
ory's scope is sometimes called the
universe of discourse. The practical
use of a logical system is imple
mented by assigning meaning to

-

the elements of the vocabulary.
From this meaning, it should be
possible to assign to each truth
valued variable an obvious truth
value. The resulting interpretation
is said to be the intended interpreta
tion. For example, if we designed a
database with an ACCOlMS table, our
intended interpretation of the col
umn ACCOUNT NUMBERS would be the
set of permissible account num
bers for the actual business; we
would not intend database users to
substitute PRODUCT NUMBER for AGCOlM
NUMBER, a substitution that would
always make false the expression
that the ACCOlMS table represents.

We try to set up a logical sys
tem in such a way that (a) any in
terpretation that makes all of the
axioms true also makes all of the
theorems true (correctness); (b) all
statements of the informal theory
can be expressed in the system (ex
pressive completeness), and (c) any
truth expressible in the system is
provable (deductive completeness).
In other words, we intend that the
system's set of true expressions
-under any interpretation that
makes the axioms true-will be
identical to the set of provable ex
pressions or theorems. A system is
said to be truth functionally complete
if, given a set of connectives de
fined by truth tables, we can ex
press all possible truth tables by
various combinations of the given
truth tables. As will be seen, this
property is extremely important.

When a logical system has
more than two truth values, it is
said to be a many-valued logic. Gen
erally, at least one truth value is
called ''lRUE" and another is called
"FALSE," reflecting our commonly
held understanding of these words.
The meaning of the other values
depends on the logical system's in
tended interpretation. To under
stand the role played by these oth
er values better, logicians classify
them as being "true-like," "false
like," or neither. A truth value is
said to be designated, anti-designated,
or undesignated, according to wheth
er it is treated as true-like, false
like, or neither. This subtlety is
necessary for many-valued logics
in which the notions of "degrees
of truth" and "degrees of falsity"
may be intended.

Within any logical system, a
tautology is a wff that always eval-

I I I I I I I I I I I I I I I I I

Many-valued
logic approaches
aren't correct
for practical
database use

uates to a true-like truth value. For
example, according to our usual
understanding of two-valued log
ic, "P OR (NOT P)" is always true, re
gardless of whether "P" is true or
false. Similarly, a contradiction is a
wff that evaluates to a false-like
truth value regardless of assign
ment of truth values to its compo
nents. As with the example of a
tautology, according to our usual
understanding of two-valued log
ic, "P AND (NOT P)" is always false, re
gardless of whether "P" is true or
false. Note that the axioms of a
logical system are tautologies un
der the intended interpretation.

In a correct logical system
(that is, one with the property of
correctness), if every wff that is a
theorem is also a tautology, logi
cians say that the system is consis
tent; the theorems provable from
the axioms are always tautologies.
Otherwise, they say the system is
inconsistent. The logician's concepts
of consistency and inconsistency
are related to, but distinct from,
the common notion of being in
consistent (that is, contradictory).
Logicians call our common notion
negation inconsistency.

If every tautology in a correct
system is guaranteed to be prov
able, we say the system is deduc
tively complete. A system is deduc
tively complete in a strong sense if
no wff can be added to its axiom
set that would be independent of
the other axioms. In fact, we could
then prove that a new indepen
dent axiom could only make a con
sistent system inconsistent. We say
a system is decidable if an algo
rithm exists by which we could
determine whether or not an arbi
trary wff is a theorem.

PROPOSITIONAL CALCULUS
You are now equipped to under
stand the next section. Our task is
to consider a few key properties of
the propositional calculus. The

DECEMBER 1993
38

propositional calculus is deduc
tively complete, negation consis
tent (it is impossible for a wff and
its negation to be true), and decid
able. Despite these positive prop
erties, the propositional calculus is
expressively weak. In particular, it
is not capable of recognizing that
two propositions share a common
subject. Deduction involving state
ments of this nature must be con
sidered outside the intended inter
pretation. For example, the Greek
Stoics recognized the problem
with the following invalid argu
ment, called The Nobody:

Premise: It someone is here, then he is not in
Rhodes.
Premise: Someone is here.
Conclusion: Therefore it is not the case that some
one is in Rhodes!

This line of reasoning would be
valid, of course, if we replaced the
word "someone" by the name of
an individual, say "Ted." But the
word "someone" is ambiguous: It
refers to a specific individual part
of the time and to some nonspeci
fic individual the remainder of the
time . The propositional calculus
cannot help us determine what is
wrong because it has no way of re
presenting the concept of proposi
tions that share a common subject.

PREDICATE CALCULUS
The first-order predicate calculus is
an extension of the propositional
calculus which, among other
things, is intended to handle such
concepts. In order to grapple with
the problem, it adds the notion of
arguments (formally called "predi
cate variables"), much as algebra
extends the concepts of arithmetic
by adding variables. An argument
is interpreted by assigning it a par
ticular value from a domain of
possible values. (We have already
seen such arguments in the de
scription of a table representing a
truth-valued expression.) A predi
cate is a statement that the argu
ment possesses a certain property;
a predicate without uninterpreted
arguments performs essentially
the same function as a proposition,
and is truth-valued. A predicate
may have zero or more arguments,
and these arguments may be shared
among numerous predicates. Note
that all occurrences of an argu-

ment must uniformly take on the
same value for any given interpre
tation. Thus, in the compound
predicate "x is red AND x is angry," it is
not permissible to replace the first
"x" with "Joe" and the second "x"
with "Jim."

Given arguments, it is possi
ble to introduce quantifiers. Two
quantifiers of the first-order predi
cate calculus are particularly im
portant: the existential (a claim that
at least one value of the argument
has the specified properties) and
the universal (a claim that all values
of the argument have the specified
properties). The first-order predi
cate calculus, unlike the proposi
tional calculus, is capable of han
dling infinite domains, such as the
domain of natural numbers. The
existential "EXISTS x" may be
thought of (but only informally) as
the propositional connective "OR"
iterated over the possibly infinite
domain of the argument x and the
truth value "FALSE." Similarly, the
universal "FORALL x" may be thought
of (informally) as the proposition
al connective "AND" iterated over
the possibly infinite domain of the
argument x and the truth value
"TRUE."

Note that any attempt to
write an algorithm for "EXISTS" over
infinite domains must fail, since
the evaluation might never termi
nate (we might never find the one
vaiue that makes the predicate
true). Likewise, any attempt to
write an algorithm for " FORALL"
must fail, since the evaluation can
not terminate if FORALL is to range
over a variable having an infinite
domain (we might never find the
one value that makes the predicate
false) . Therefore, it is important to
understand that the predicate cal
culus "EXISTS" and "FORALL" quantifi
ers are not in general identical to
simple iterated propositional "OR"
and "AND," respectively. This sub
stitution is permissible only when
the number of possible values
each quantified argument can take
is guaranteed to be finite.

The first-order predicate cal
culus is deductively complete (al
though not in the strong sense)
and consistent. It is not decidable;
that is, no algorithm exists for de
termining whether a wff is a first
order preqicate calculus theorem
or not. However, if a restricted

I I I I I I I I I I I I I I I I i

Insist that
RDBMS vendors

meet these
logical objectives

version of the first-order predicate
calculus is created in which only a
finite number of arguments is pos
sible in any expression, and in
which the domains for these argu
ments are guaranteed to be finite
(that is, have fewer than some giv
en-possibly very large-number
of elements), then this finite ver
sion is decidable.

Note that these restrictions
change the quantifiers' intended
meaning and reduce certain rules
of inference to the corresponding
rules of inference for the proposi
tional calculus. This fact will be
important in the discussion that
follows. Although we commonly
say that the relational model is
built on the first-order predicate
calculus, in practice any imple
mentation of the relational model
will be more like the finite version
described here (that is, at any
point-in-time, any real database
will have a finite number of ta
bles, columns, domains, actual val
ues, and so on).

IMPLEMENTATION
When designing a relational data
base, we define a set of predicates
(the defining predicates for ta
bles), which we call relation predi
cates. A permissible row in a table
has values that satisfy the appro
priate domain constraints and rela
tion predicate. Each permissible row
in these tables represents a true in
stance of the relation predicate.
The resulting set of true proposi
tions may be understood as the
system's axioms. In effect, we as
sert that the rows represent the
true instances of the relation
predicates; they are the system's
intended. interpretation.

The normalization process is
an algorithm intended to remove
redundancy given the relational
operations; that is, to make certain
that any table predicate is not actu
ally composed of multiple, inde
pendent relation predicates. The
process thus contributes to (but

DATABASE PROGRAMMING & DESIGN
39

does not guarantee) the axiom set's
independence. A table's attributes
may be understood as arguments,
which are functions over the de
fining domains.

By establishing a set of data
base domains (with domain con
straints), we effectively constrain
the universe of discourse. Do
mains, along with column and ta
ble constraints, are used to imple
ment the relation predicate for
each table. As such, if the do
mains, in conjunction with the re
lational operators, do not suffice to
express the facts of interest regard
ing the application, the system
cannot be expressively complete.

When certain rows are in
serted into a particular table in the
database, we are making the im
plicit claim that the substitution of
these values for the appropriate ar
guments in this table's relation
predicate results in a fact (that is,
true proposition). We may regard
each such row as a premise from
which conclusions may be drawn
using the formal axioms and rules
of inference. If a row could exist in
a given table, but does not (that is,
the values are legal and would
otherwise satisfy the relation
predicate), the meaning of this ab
sence depends on whether we want
to take a closed- or an open-world
interpretation.

The closed-world interpretation
states that both the DBMS and the
user may infer that the predicate
corresponding to an absent row is
"FALSE." The open-world · interpretation
states that the status of the predi
cate for that same row is "FALSE OR
UNKNOWN." For example, suppose
that we have a table MANAGERS with
columns EMP# and MGR#, having the
relation predicate, "The manager
of employee number EMP# is em
ployee number MGR#," and that the
row containing <368, 126> does
not appear in the table. The
closed-world interpretation says
that we may assume that the state
ment, "The manager of employee
number 368 is employee number
126" is "FALSE." By contrast, the
open-world interpretation says that
we can only assume this statement
is "FALSE OR UNKNOWN." For definite
ness, in the remainder of this arti
cle I will assume the closed-world
interpretation.

When you write a query, you

are attempting to produce a wff (a
predicate in its own right). It is the
parser's job to verify that the que
ry you write is a wff-that it is
syntactically correct. Think of the
optimizer as using· the rules of in
ference, various axioms, and var
ious provable theorems to produce
a set of equivalent wffs, each of
which uses only operations with
associated physical access meth
ods. Each of the rows returned by
the DBMS represents a tuple of
values which, on proper substitu
tion into the predicate, result in
propositions that evaluate as true
(that is, facts) in the logical system.
The result set is the system's prov
able theorem (see Figure 4). The
important point to remember is:
Whenever you write a multistate
ment transaction or application, is
sue a sequence of decision-support
queries, or embed a subquery in a
query (or decompose it into a se
quence of queries), you are using
the axioms and rules of inference
of the logical system to prove
theorems!

OBJECTIVES
It is dear that certain properties
are desirable· of any logical system
on which a DBMS is based. In par
ticular, the DBMS sh ould be a
logical system that is uniformly in
terpretable, expressively complete,

I I I I I I I I I I I I I I I I I

Given the famlliu parts suppliers da~ prove the theorem:

f 1= ll:- ~:: :: : S2 Janes P2 Bolt $1 P2 2()()

S2 P1 300

TIHtorem: The quantity (QTY) of the part (PNAME) named 'Nut' aVailable
from supplier named (SNAME) Smith is 3'?0·

. Proof:
1. By axiom (the row In S): .
SELECT S# FROM S WHERE SNAME = 'Smith';
2. By axiom (the row In P): .
SELECT P# FROM P WHERE PNAME = 'Nut';
3 . . By axiom (relation predicate for SP): '
SELECT QTY FROM SP WHERE (TRUE) AND (TRUE);
4. By substitution:
SELECT QTY FROM SP
WHERE S# - (SELECT S# FROM S WHERE SNAME ·- 'Smith')
AND P# - (SELECT P# FROM P WHERE PNAME - 'Nut');

• 5. By substitution (from the raws in 1 and 2):
SELECT QTY FROM SP WHERE S# - 'Sl ' AND P# ... 'P1';
6. By substitution (the row In SP); 300 ·

FIGURE 4. Querying as proving a theorem.

deductively complete, consistent,
truth functional, truth funct ional
ly complete, familiar, and, ideally,
decidable. Intuitively, we can un
derstand each of these objectives
as follows:

0 Familiar. The common un
derstanding of the truth values,
connectives, rules of inference, and
accepted tautologies should re
main valid. That is, the user

DECEMBER 1993
40

should not have to learn an unfa
miliar or nonintuitive logical sys
tem, which contains surpris ing
theorems and tautologies or which
denies commonly held rules of in
ference so that usage errors are
likely to occur.

0 Uniformly interpretable. The
intended interpretation of every
symbol, truth value, and query
should be unambiguous, irrespec
tive of the database's state.

0 Truth funct ional. The evalu- '
ation of a query (a wff) can pro
ceed mechanically from the evalu
ation of its components; similarly,
queries of arbitrary complexity can
be written and understood from
an understanding of the connec
tives alone.

0 Truth functionally complete.
The set of initially given opera
tions and connectives in the query
language suffice to express any
logical connective definable via a
truth table. Thus, for every fact in
the universe of discourse, there
will be a truth-valued expression
to determine whether the fact is
represented in the database.

0 Expressively complete. All
queries that are meaningful in the
context of the application can be
expressed, and all relevant facts ·
about the application environment
can be captured in the database.

0 Deductively complete. Every
fact represented by the database,

either implicitly or explicitly, can
be obtained via a query.

D Consistent. The result of ev
ery query represents facts that can
be inferred from the database.

D Decidable. Although not
strictly required, a decidable and
consistent system would have the
advantage that a query could be
checked via an algorithm to deter
mine if it were a tautology (since
every theorem ·in a consistent sys
tem is a tautology; in this case, ev
ery row would satisfy the predi
cate), a contradiction (in which
case no rows could ever satisfy the
predicate), or neither.

LOGIC AND THE DATABASE
Hopefully, Part I of this series will
have made the relationship be
tween formal logic and databases a
bit clearer for database practition
ers. I have stated the goals that
make using a logical system as the
basis of database management ad
vantageous, and presented the de
sirable properties of this logical
system in databas·e terminology.
At the very least, I would hope

I I I I I I I I I I I I I I I I I
that database professionals will
now be able to use some of these
logical concepts in evaluating a re
lational DBMS's strengths and
weaknesses. While errors of imple
mentation are sometimes to blame,
the cause of many performance,
data integrity, and maintenance
problems lie in much more serious
design flaws involving the failure
to capitalize on the logical founda
tion of relational theory. With ·a
little practice, logical concepts will
prove useful in identifying such
database and application design
problems. You can start by insist
ing that RDBMS vendors meet the
logical objectives outlined here.

In Part II of this series, I will
examine many-valued logics in the
light of these objectives. We will
find these logics lacking, and
therefore unsuitable for represent
ing and manipulating partial knowl-.
edge in a database. •

The author would like to thank Chris Date,
Hugh Dmwen, and Ron Fagin for their helpful
comments and criticisms. I would also like to
apologize to Billy Preston and Tina Turner for
the abuse of their song titles.

NOTES & REFERENCES
1. By "null,'' we mean an argument val

ue placeholder-not a value-that typical
ly forces the relation predicate to be nei
ther "TRUE" nor "FALSE." Note that it is
distinct from the "UNKNOWN" truth val
ue and can be of various kinds ("applicable
but unknown," "inapplicable," and so on).
SQL's NULL is a particularly bad imple
mentation of such a placeholder.

2. We use BI-IMPLIES in place of the
usual logical EQUIVALEN1'S to improve
readability.

3. Suppes, P. Introduction to Logic, Wads-.
worth, 1957.

4. Codd, E. F. "A Relational Model of
Data for Laige Shared Data Banks," re
printed in Readings in Database Systems, M .
Stonebraker, ed., Morgan .Kaufmann, 1988.

5. Codd, E. F. "Extending the Database
Relational Model to Capture More Mean
ing," reprinted in Readings in Database $ys
tems, M. Stonebraker, ed., Morgan .Kauf
mann, 1988.

6. Delong, H. A Profile of Mathematical
Logic, Addison-Wesley Publishing Co. Inc,
1970.

7. Massey, G. Understanding Symbolic Log
ic, Harper&: Row, 1970.

David McGoveran ia president of Alterna·
tive Technologlea (Boulder Crfflc, Cali
fornia), a relational databne conaulllng
firm founded In 1976.. He ha• authored
numerous technical articlea and hi also
the publisher of the "Databa• Product
Evaluation Report Series."

. ..,.. ,
~
~ ~~ ,· ... \ -' I ~ - ~ ' . ~ -. -

In order for Database Programming & Design co provide you with the best in Subscriber Service, we have compiled
the listing below co help answer any of your service related questions. Please dip and save for easy reference.

SUBSCRIPTION SERVICE
For all subscription inquiries regarding billing. renewal, or change
of address: Call Toll-Free 1-800-289-0I69. Foreign subscribers
may all 303-447-9330. Your mailing label will come in handy
when speaking with our Cuscomer Service Representatives. To
order new or gift subscriptions, please send your request co:

Database Programming & Design
P.O. Box 53481
Boulder, CO 80322-3481

MOVING?
Please try co give us four to six weeks nocice co ensure uninterrupt
ed service. Subscriptions are noc forwarded unless reque.Stcd. Be
sure co include your old address, your new address, and the date
you'll be a't the new address. Attach yow mailing label showing

your old address and aa:ount number - this is always helpful.

DUPLICATE COPIES?
Duplicated copies can occur when there is a slight variation in
your name and address. Please send both mailing labels when noti
fying us of duplicates. Be sure co tell us which address you prefer.

JUST MADE A PAYMENT - BUT STill
RECEMNG BILLING AND RENEWAL NOTICES?

A notice could have been generated just prior co your payment. If
you have just made a payment, please ignore recent notices. It is
most likdy they have crossed in the mail.

MAILING LISTS
From time to time we make our subscriber list available co careful·
ly screened companies whose produas may be of interest co you.
If you would rather not receive such solicitations, simply send u.s

your mailing label with a request 10 exclude your name.

OTHER PUBLICATIONS ... Miller Freeman, Inc. also publishes: DBMS, lAN, Cadence, The Mathematica Journal,
Al Expert, Stacks, Software Development, and UNIX Review magazines.

DATABASE PROGRAMMING & DESIGN
41

