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BY DAVID McGOVERAN 

Success of relational database is endangered by a misunderstanding of its 
true foundation-the ageless logic behind the relational model 

. , • 

from 
• 

(Or, What's Logic 
Got to Do 

~E RELATIONAL 
.J. ~odel may not be 

dead, but it suffers from incapaci­
tating wounds at the hands of 
database vendors, standards, and 
benchmark committees (not neces­
sarily distinct from vendors), and 
"experts" who insist on explaining 
what they never bothered to un­
derstand. Of course, not all the 
blame can be laid on these inno­
cents; despite the genius of many 
of his insights, Dr. E. F. Codd must 
take some responsibility for the 
confusion that surrounds relation­
al model issues-in particular, the 
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confusion over many-valued logics . 
This article is Part I of a four­

part series. The series addresses a 
crisis (and a scandal) of the relational 
model: the use of many-valued 
logic as a mechanism for handling 
missing information. Before. em­
barking on our journey into the 
problems with many-valued logic, 
it is necessary to consider what a 
logical system is and how it relates 
to DBMS implementation. The goal 
of Part I is to provide a founda­
tional knowledge of logic for data­
base uses. 

Part II will use the terminol-
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ogy defined here to explain why 
many-valued logic approaches are 
not appropriate for practical data­
base use. Part III will examine the 
pragmatic motivations that compel 
database designers to use "nulls," 
or any other indicator of missing 
information.1 Therefore, we are 
left with a conundrum: If many­
valued logics are inappropriate for ~ 
handling missing information, and ~ 
database designers have legitimate t 
reasons for wanting to represent a 
this missing information, what can ~ 
we use in place of many-valued § 
logic? Part Ill sets the stage for- ~ 



and Part IV provides-a compre­
hensive answer to this question, 
with practical solutions for the 
most common situations in which 
nulls appear in current database 
implementations. 

This series is neither as for­
mal or complete as I would like to 
make it. I must pass over known 
issues due to space limitations; I 
am also certain that formal issues 
and developments exist of which I 
am unaware. Nonetheless, I have 
tried to assure myself (through ex­
tensive research and study) that the 
discussion of key issues is accurate, 
and that the reader will be pre­
pared to understand the essential 
problems associated with real-world 
database use of many-valued log­
ics discussed in Part II. The con­
cepts are difficult: Be patient; take 
it in carefully and slowly. 

DBMS GOALS 
A DBMS should provide share­
able, reusable, and efficient ser­
vices for the definition, capture, 
organization, and manipulation of 
data. The DBMS should do it in a 
way that ensures the data's integri­
ty, regardless of user actions or 
system failures. An additional goal 
drives much of what differentiates 
a relational DBMS (RDBMS) from 
other DBMSs: Changes to the data 
should not require changes to ap­
plications, and vice-versa. Adher­
ence to this goal minimizes the 
amount of code that must be writ­
ten for a given application, and re­
duces application maintenance. 
Curiously, however, this goal is 
often forgotten. This goal has had 
a strong impact on the features 
needed in an RDBMS. 

If applications are to be inde­
pendent of data organization and 
access methods, the data definition 
and manipulation language must 
be declarative (or "nonprocedural"). 
Otherwise, a change to organiza­
tion or access methods (such as 
those required as the database 
grows or is optimized for perfor­
mance) will require a compensat­
ing change in the application. In 
addition, much of the data access 
code found in structured applica­
tions involves sorting and select­
ing data, typically using numerous 
control loops. If this code can be 
moved out of individual applica­
tions and shared by all applications, 
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Vocabulary: 
• Variables: any legal SOL truth-valued. expression (for example, "colA > 
colB") 
• Grouping indicators: "(", ")" 
•Truth values: "TRUE," "UNKNOWN," "FALSE" 
• Connectives: "NOT," "AND," "OR" (defined for two-valued logic) 

Formation Rules: 
•The rules for creating syntactically correct SELECTs (and, by extension, 
syntactically correct INSERTS, DELETEs, and UPDATEs). 

Axioms: 
• No expllclt axioms, although each row in the database may be consid­
ered an axiom. 

Rules of Inference: 
•A restricted rule of substitution; equivalent expressions may generally 
be substituted, one tor the other, and a subquery may appear in place of 
certain .expressions. 

FIGlllE t SQL (without nulls) as a logical system. Loosely speaking, we can consider 
SQL a logical system. 

we gain in areas of performance op­
timization and maintenance. How­
ever, if applications developers 
must choose from several data ac­
cess routines, the gains will not be 
very large. For example, having 
one data access routine for each 
data structure would defeat the 
purpose. 

This situation suggests that 
we should minimize the number 
of distinct data access routines, at 
least as seen by applications. There­
fore, we need a special language 
(the data sub language or "query 
language") using the smallest 
number of operations. At odds 
with this goal is the concern that 
the language be capable of ex­
pressing every possible request for 
the intended set of applications 
(including ad hoc queries, unim­
plemented applications, and more). 
This latter concept is known formal­
ly as expressive completeness. 

Another obstacle to minimiz­
ing data access routines is that the 
most efficient access method does 
depend on physical data organiza­
tion. Thus, the question is: How 
can we map a few data access rou­
tines to the possibly many rou­
tines, each optimized for the actu­
al organization and type of data 
being accessed? The answer is auto­
matic data access code optimiz­
ation. Such optimization requires 
knowledge of data's physical orga­
nization. And if the database is 
changing rapidly, this knowledge 
must be up-to-the-minute. So, 
where in a business system's struc-
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ture is this information available? 
Where should shared data access 
code be maintained, and where 
should this ·optimization take 
place? The obvious answer is: in 
the DBMS. 

This line of argument leads 
us to a fundamental problem: Which 
algorithms should the DBMS opti­
mizer (the code that performs opti­
mization) use? Techniques used by 
compilers for procedural code op­
timization are relatively straight­
forward; for the most part, they do 
not alter the algorithm as it was 
coded by the developer. We need 
a different kind of optimization, 
one that substitutes an equivalent 
but more efficient algorithm (a 
data access method) for a standard 
data access routine. This concept 
implies that the optimizer is able 
to identify algorithm equivalence 
and evaluate the relative cost of 
the available algorithms; it must 
have provably correct rules by 
which it determines algorithm 
equivalence. 

FORMAL LOGICAL SYSTEM 
All of these considerations lead us 
to one conclusion: The query lan­
guage should be an implementa­
tion of a formal logical system. To 
understand what is possible, let's 
briefly examine the components 
and properties of formal logical 
systems. 

We must begin with some 
definitions, which will be used ex­
tensively as we go on. A logical 
system consists of four types of ob-



jects (see Figure 1 ): 
D Vocabulary. A collection of 

symbols used unambiguously to 
represent truth-valued variables 
(such as "P," "Q," and "x"), group­
ing indicators (such as"(",")", and 
"!"), truth values ("T" for true or 
"F" for false), and connectives 
(such as "OR," "AND," and "NOT"). 

D A collection of formation 
rules for governing the creation of 
"well-formed formulas" (wffs­
pronounced "wiffs"). 

D A collection of axioms. The 
set of wffs that is given initially, 
each of which is guaranteed to be 
"true." Ideally, the axioms should 
all be independent; that is, it will 
not be possible to prove any given 
axiom from the others. 

D A collection of rules of in­
ference (also called deductions) by 
which a new wff may be derived 
from existing wffs. This new wff is 
called a theorem. A finite sequence 
of wffs, each of which is either an 
axiom or can be inferred from an 
earlier wff via a rule of inference, 
is called a proof and, in particular, 
is a proof of the final wff. 

The definition of a logical 
system is meant to be applied in a 
purely mechanical fashion: that is, 
the process of determining wheth­
er an object (expression) belongs 
to the vocabulary, is a wff, or is an 
axiom, cannot be based on judg­
ment or on the outcome of some 
random event. Determining wheth­
er or not a rule of inference has 
been properly applied must also 
be purely mechanical. 

The connectives are often de­
fined in terms of truth tables. A 
truth table is a tabular represent­
ation of a formation rule and, pos­
sibly, certain rules of inference 
that specify the compound's truth 
value, given the components' 
truth values (see Figure 2). We say 
that a set of connectives is indepen­
dent if it is not possible to express 
the truth table for any given con­
nective in terms of the truth tables 
for the other connectives. For ex­
ample, the set of truth tables con­
sisting of the SQL connectives and 
the connective (shown in Figure 3) 
called material implication is not in­
dependent, since material implica­
tion has the same truth table as 
"(NOT P) OR Q." Readers can show this 
fact by substitution using the truth 
tables in Figure 2 for "NOT" and 
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"OR." In fact, /1 AND," "OR," and "NOT" 
also fail the test of independence 
(see the exercises at the end of the 
article). 

When the truth value of a 
wff can be evaluated in a mechani­
cal manner from the truth values 
of its components, a logical system 
is said to be truth functional. We 
will use this important concept 
later. 

Each possible choice for the 
objects that make up a logical sys­
tem results in a different logical 
system. We could show some logi­
cal systems to be equivalent in 
some sense, but only in trivial 
cases (usually involving differences 
of representation-for example, if 
Greek letters are used in place of 
English for symbols, or if we swap 
the identification of axioms and 

AND OR 

P\QI T F 

T T T 
F T F 

NOT 

FIGURE 2. Two-valued truth tables for 
SQL connectives. 
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P\Qj T F 

T T F 
F T T 
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T 

FIGURE 3. Two-valued material implica­
tion and material equivalence. Note that 
these are not directly supported in SQL! 

theorems). Not all logical systems 
are equally powerful. For a par­
ticular logical system, a rule that 
assigns a truth value to every 
truth-valued variable in a set of 
wffs is called an interpretation of 
that set of wffs. The following is 
an example of an interpretation: 

Given wffs: "P AND Q," "P OR Q" 
Truth value assignments: "P" is "TRUE," "Q" is 
"FALSE" 

Note that in some logical systems 
(including, in particular, the sys­
tem supposedly underlying SQL), 
a wff may consist of truth-valued 
expressions containing variables that 
are not themselves truth-valued, 
but whose assigned values imply 
the truth or falsity of the expres­
sion. The interpretation of such 
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expressions then includes the val­
ues assigned to these non-truth­
valued variables. 

For example, a relational ta­
ble (simply "table" hereafter) de­
fines a truth-valued expression, 
with each column representing a 
variable. Consider the Suppliers ta­
ble of the familiar Parts-Suppliers 
database. The table consists of a 
supplier number (S#), a supplier 
name (SNA!lt£), a status (STATUS), and a 
city location (CITY), and defines the 
expression: "There exists a supplier with S# 
= w AND SNAME = x AND STATUS = y AND 
CITY = z, where w, x, y, and z are variables." 
The row <'Sl','Smith','20','London'> ap­
pearing in the table represents the 
expression, with these values sub­
stituted for w, x, y, and z, respec­
tively. If values for w, x, y, and z 
are substituted in the expression 
and these values actually appear as 
a row in the table, the expression 
is said to evaluate to TRUE. Other­
wise, it must evaluate to FALSE. 

Perhaps the most familiar 
logical system is the (two-valued) 
propositional calculus. This system 
treats each variable as a proposi­
tion that must be evaluated inde­
pendently of all others, and each 
such variable can be assigned ex­
actly one value in a proof. The usu­
al set of independent connectives 
consists of the familiar /1 AND", "ffi'', 
and "NOT", with "MUS'' (implication) 
and "Bl-ft1PLES" (truth-value equiv­
alence )2 being defined in terms of 
these base connectives in a man­
ner called material implication and 
material equivalence (see Figure 3). 
Among its rules of inference are: 

D The rule of substitution 
(given Q Bl-lMPLES R and P IMPLES Q, the 
rule of substitution tells us that "P 
IMPLIES R'') 

D The rule of modus ponens (if 
P IMPLES Q is true and "P" is true, 
then "Q" is true). 

A logical system is generally 
intended for some practical use. 
For convenience, we will say that 
our understanding of the subject 
of that practical use (for example 
accounting) is an informal theory 
(that is, some informal set of rules, 
requirements, descriptions, and so 
forth) regarding the particular sub­
ject or process. The informal the­
ory's scope is sometimes called the 
universe of discourse. The practical 
use of a logical system is imple­
mented by assigning meaning to 
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the elements of the vocabulary. 
From this meaning, it should be 
possible to assign to each truth­
valued variable an obvious truth 
value. The resulting interpretation 
is said to be the intended interpreta­
tion. For example, if we designed a 
database with an ACCOlMS table, our 
intended interpretation of the col­
umn ACCOUNT NUMBERS would be the 
set of permissible account num­
bers for the actual business; we 
would not intend database users to 
substitute PRODUCT NUMBER for AGCOlM 
NUMBER, a substitution that would 
always make false the expression 
that the ACCOlMS table represents. 

We try to set up a logical sys­
tem in such a way that (a) any in­
terpretation that makes all of the 
axioms true also makes all of the 
theorems true (correctness); (b) all 
statements of the informal theory 
can be expressed in the system (ex­
pressive completeness), and (c) any 
truth expressible in the system is 
provable (deductive completeness). 
In other words, we intend that the 
system's set of true expressions 
-under any interpretation that 
makes the axioms true-will be 
identical to the set of provable ex­
pressions or theorems. A system is 
said to be truth functionally complete 
if, given a set of connectives de­
fined by truth tables, we can ex­
press all possible truth tables by 
various combinations of the given 
truth tables. As will be seen, this 
property is extremely important. 

When a logical system has 
more than two truth values, it is 
said to be a many-valued logic. Gen­
erally, at least one truth value is 
called ''lRUE" and another is called 
"FALSE," reflecting our commonly 
held understanding of these words. 
The meaning of the other values 
depends on the logical system's in­
tended interpretation. To under­
stand the role played by these oth­
er values better, logicians classify 
them as being "true-like," "false­
like," or neither. A truth value is 
said to be designated, anti-designated, 
or undesignated, according to wheth­
er it is treated as true-like, false­
like, or neither. This subtlety is 
necessary for many-valued logics 
in which the notions of "degrees 
of truth" and "degrees of falsity" 
may be intended. 

Within any logical system, a 
tautology is a wff that always eval-
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Many-valued 
logic approaches 
aren't correct 
for practical 
database use 

uates to a true-like truth value. For 
example, according to our usual 
understanding of two-valued log­
ic, "P OR (NOT P)" is always true, re­
gardless of whether "P" is true or 
false. Similarly, a contradiction is a 
wff that evaluates to a false-like 
truth value regardless of assign­
ment of truth values to its compo­
nents. As with the example of a 
tautology, according to our usual 
understanding of two-valued log­
ic, "P AND (NOT P)" is always false, re­
gardless of whether "P" is true or 
false. Note that the axioms of a 
logical system are tautologies un­
der the intended interpretation. 

In a correct logical system 
(that is, one with the property of 
correctness), if every wff that is a 
theorem is also a tautology, logi­
cians say that the system is consis­
tent; the theorems provable from 
the axioms are always tautologies. 
Otherwise, they say the system is 
inconsistent. The logician's concepts 
of consistency and inconsistency 
are related to, but distinct from, 
the common notion of being in­
consistent (that is, contradictory). 
Logicians call our common notion 
negation inconsistency. 

If every tautology in a correct 
system is guaranteed to be prov­
able, we say the system is deduc­
tively complete. A system is deduc­
tively complete in a strong sense if 
no wff can be added to its axiom 
set that would be independent of 
the other axioms. In fact, we could 
then prove that a new indepen­
dent axiom could only make a con­
sistent system inconsistent. We say 
a system is decidable if an algo­
rithm exists by which we could 
determine whether or not an arbi­
trary wff is a theorem. 

PROPOSITIONAL CALCULUS 
You are now equipped to under­
stand the next section. Our task is 
to consider a few key properties of 
the propositional calculus. The 
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propositional calculus is deduc­
tively complete, negation consis­
tent (it is impossible for a wff and 
its negation to be true), and decid­
able. Despite these positive prop­
erties, the propositional calculus is 
expressively weak. In particular, it 
is not capable of recognizing that 
two propositions share a common 
subject. Deduction involving state­
ments of this nature must be con­
sidered outside the intended inter­
pretation. For example, the Greek 
Stoics recognized the problem 
with the following invalid argu­
ment, called The Nobody: 

Premise: It someone is here, then he is not in 
Rhodes. 
Premise: Someone is here. 
Conclusion: Therefore it is not the case that some­
one is in Rhodes! 

This line of reasoning would be 
valid, of course, if we replaced the 
word "someone" by the name of 
an individual, say "Ted." But the 
word "someone" is ambiguous: It 
refers to a specific individual part 
of the time and to some nonspeci­
fic individual the remainder of the 
time . The propositional calculus 
cannot help us determine what is 
wrong because it has no way of re­
presenting the concept of proposi­
tions that share a common subject. 

PREDICATE CALCULUS 
The first-order predicate calculus is 
an extension of the propositional 
calculus which, among other 
things, is intended to handle such 
concepts. In order to grapple with 
the problem, it adds the notion of 
arguments (formally called "predi­
cate variables"), much as algebra 
extends the concepts of arithmetic 
by adding variables. An argument 
is interpreted by assigning it a par­
ticular value from a domain of 
possible values. (We have already 
seen such arguments in the de­
scription of a table representing a 
truth-valued expression.) A predi­
cate is a statement that the argu­
ment possesses a certain property; 
a predicate without uninterpreted 
arguments performs essentially 
the same function as a proposition, 
and is truth-valued. A predicate 
may have zero or more arguments, 
and these arguments may be shared 
among numerous predicates. Note 
that all occurrences of an argu-



ment must uniformly take on the 
same value for any given interpre­
tation. Thus, in the compound 
predicate "x is red AND x is angry," it is 
not permissible to replace the first 
"x" with "Joe" and the second "x" 
with "Jim." 

Given arguments, it is possi­
ble to introduce quantifiers. Two 
quantifiers of the first-order predi­
cate calculus are particularly im­
portant: the existential (a claim that 
at least one value of the argument 
has the specified properties) and 
the universal (a claim that all values 
of the argument have the specified 
properties). The first-order predi­
cate calculus, unlike the proposi­
tional calculus, is capable of han­
dling infinite domains, such as the 
domain of natural numbers. The 
existential "EXISTS x" may be 
thought of (but only informally) as 
the propositional connective "OR" 
iterated over the possibly infinite 
domain of the argument x and the 
truth value "FALSE." Similarly, the 
universal "FORALL x" may be thought 
of (informally) as the proposition­
al connective "AND" iterated over 
the possibly infinite domain of the 
argument x and the truth value 
"TRUE." 

Note that any attempt to 
write an algorithm for "EXISTS" over 
infinite domains must fail, since 
the evaluation might never termi­
nate (we might never find the one 
vaiue that makes the predicate 
true). Likewise, any attempt to 
write an algorithm for " FORALL" 
must fail, since the evaluation can­
not terminate if FORALL is to range 
over a variable having an infinite 
domain (we might never find the 
one value that makes the predicate 
false) . Therefore, it is important to 
understand that the predicate cal­
culus "EXISTS" and "FORALL" quantifi­
ers are not in general identical to 
simple iterated propositional "OR" 
and "AND," respectively. This sub­
stitution is permissible only when 
the number of possible values 
each quantified argument can take 
is guaranteed to be finite. 

The first-order predicate cal­
culus is deductively complete (al­
though not in the strong sense) 
and consistent. It is not decidable; 
that is, no algorithm exists for de­
termining whether a wff is a first­
order preqicate calculus theorem 
or not. However, if a restricted 
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version of the first-order predicate 
calculus is created in which only a 
finite number of arguments is pos­
sible in any expression, and in 
which the domains for these argu­
ments are guaranteed to be finite 
(that is, have fewer than some giv­
en-possibly very large-number 
of elements), then this finite ver­
sion is decidable. 

Note that these restrictions 
change the quantifiers' intended 
meaning and reduce certain rules 
of inference to the corresponding 
rules of inference for the proposi­
tional calculus. This fact will be 
important in the discussion that 
follows. Although we commonly 
say that the relational model is 
built on the first-order predicate 
calculus, in practice any imple­
mentation of the relational model 
will be more like the finite version 
described here (that is, at any 
point-in-time, any real database 
will have a finite number of ta­
bles, columns, domains, actual val­
ues, and so on). 

IMPLEMENTATION 
When designing a relational data­
base, we define a set of predicates 
(the defining predicates for ta­
bles), which we call relation predi­
cates. A permissible row in a table 
has values that satisfy the appro­
priate domain constraints and rela­
tion predicate. Each permissible row 
in these tables represents a true in­
stance of the relation predicate. 
The resulting set of true proposi­
tions may be understood as the 
system's axioms. In effect, we as­
sert that the rows represent the 
true instances of the relation 
predicates; they are the system's 
intended. interpretation. 

The normalization process is 
an algorithm intended to remove 
redundancy given the relational 
operations; that is, to make certain 
that any table predicate is not actu­
ally composed of multiple, inde­
pendent relation predicates. The 
process thus contributes to (but 
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does not guarantee) the axiom set's 
independence. A table's attributes 
may be understood as arguments, 
which are functions over the de­
fining domains. 

By establishing a set of data­
base domains (with domain con­
straints), we effectively constrain 
the universe of discourse. Do­
mains, along with column and ta­
ble constraints, are used to imple­
ment the relation predicate for 
each table. As such, if the do­
mains, in conjunction with the re­
lational operators, do not suffice to 
express the facts of interest regard­
ing the application, the system 
cannot be expressively complete. 

When certain rows are in­
serted into a particular table in the 
database, we are making the im­
plicit claim that the substitution of 
these values for the appropriate ar­
guments in this table's relation 
predicate results in a fact (that is, 
true proposition). We may regard 
each such row as a premise from 
which conclusions may be drawn 
using the formal axioms and rules 
of inference. If a row could exist in 
a given table, but does not (that is, 
the values are legal and would 
otherwise satisfy the relation 
predicate), the meaning of this ab­
sence depends on whether we want 
to take a closed- or an open-world 
interpretation. 

The closed-world interpretation 
states that both the DBMS and the 
user may infer that the predicate 
corresponding to an absent row is 
"FALSE." The open-world · interpretation 
states that the status of the predi­
cate for that same row is "FALSE OR 
UNKNOWN." For example, suppose 
that we have a table MANAGERS with 
columns EMP# and MGR#, having the 
relation predicate, "The manager 
of employee number EMP# is em­
ployee number MGR#," and that the 
row containing <368, 126> does 
not appear in the table. The 
closed-world interpretation says 
that we may assume that the state­
ment, "The manager of employee 
number 368 is employee number 
126" is "FALSE." By contrast, the 
open-world interpretation says that 
we can only assume this statement 
is "FALSE OR UNKNOWN." For definite­
ness, in the remainder of this arti­
cle I will assume the closed-world 
interpretation. 

When you write a query, you 



are attempting to produce a wff (a 
predicate in its own right). It is the 
parser's job to verify that the que­
ry you write is a wff-that it is 
syntactically correct. Think of the 
optimizer as using· the rules of in­
ference, various axioms, and var­
ious provable theorems to produce 
a set of equivalent wffs, each of 
which uses only operations with 
associated physical access meth ­
ods. Each of the rows returned by 
the DBMS represents a tuple of 
values which, on proper substitu­
tion into the predicate, result in 
propositions that evaluate as true 
(that is, facts) in the logical system. 
The result set is the system's prov­
able theorem (see Figure 4). The 
important point to remember is: 
Whenever you write a multistate­
ment transaction or application, is­
sue a sequence of decision-support 
queries, or embed a subquery in a 
query (or decompose it into a se­
quence of queries), you are using 
the axioms and rules of inference 
of the logical system to prove 
theorems! 

OBJECTIVES 
It is dear that certain properties 
are desirable· of any logical system 
on which a DBMS is based. In par­
ticular, the DBMS sh ould be a 
logical system that is uniformly in­
terpretable, expressively complete, 
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Given the famlliu parts suppliers da~ prove the theorem: 

f 1= ll:- ~:: :: : S2 Janes P2 Bolt $1 P2 2()() 

S2 P1 300 

TIHtorem: The quantity (QTY) of the part (PNAME) named 'Nut' aVailable 
from supplier named (SNAME) Smith is 3'?0· 

. Proof: 
1. By axiom (the row In S): . 
SELECT S# FROM S WHERE SNAME = 'Smith'; 
2. By axiom (the row In P): . 
SELECT P# FROM P WHERE PNAME = 'Nut'; 
3 . . By axiom (relation predicate for SP): ' 
SELECT QTY FROM SP WHERE (TRUE) AND (TRUE); 
4. By substitution: 
SELECT QTY FROM SP 
WHERE S# - ( SELECT S# FROM S WHERE SNAME ·- 'Smith') 
AND P# - ( SELECT P# FROM P WHERE PNAME - 'Nut'); 

• 5. By substitution (from the raws in 1 and 2): 
SELECT QTY FROM SP WHERE S# - 'Sl ' AND P# ... 'P1'; 
6. By substitution (the row In SP); 300 · 

FIGURE 4. Querying as proving a theorem. 

deductively complete, consistent, 
truth functional, truth funct ional­
ly complete, familiar, and, ideally, 
decidable. Intuitively, we can un­
derstand each of these objectives 
as follows: 

0 Familiar. The common un­
derstanding of the truth values, 
connectives, rules of inference, and 
accepted tautologies should re­
main valid. That is, the user 
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should not have to learn an unfa­
miliar or nonintuitive logical sys­
tem, which contains surpris ing 
theorems and tautologies or which 
denies commonly held rules of in­
ference so that usage errors are 
likely to occur. 

0 Uniformly interpretable. The 
intended interpretation of every 
symbol, truth value, and query 
should be unambiguous, irrespec­
tive of the database's state. 

0 Truth funct ional. The evalu- ' 
ation of a query (a wff) can pro­
ceed mechanically from the evalu­
ation of its components; similarly, 
queries of arbitrary complexity can 
be written and understood from 
an understanding of the connec­
tives alone. 

0 Truth functionally complete. 
The set of initially given opera­
tions and connectives in the query 
language suffice to express any 
logical connective definable via a 
truth table. Thus, for every fact in 
the universe of discourse, there 
will be a truth-valued expression 
to determine whether the fact is 
represented in the database. 

0 Expressively complete. All 
queries that are meaningful in the 
context of the application can be 
expressed, and all relevant facts · 
about the application environment 
can be captured in the database. 

0 Deductively complete. Every 
fact represented by the database, 



either implicitly or explicitly, can 
be obtained via a query. 

D Consistent. The result of ev­
ery query represents facts that can 
be inferred from the database. 

D Decidable. Although not 
strictly required, a decidable and 
consistent system would have the 
advantage that a query could be 
checked via an algorithm to deter­
mine if it were a tautology (since 
every theorem ·in a consistent sys­
tem is a tautology; in this case, ev­
ery row would satisfy the predi­
cate), a contradiction (in which 
case no rows could ever satisfy the 
predicate), or neither. 

LOGIC AND THE DATABASE 
Hopefully, Part I of this series will 
have made the relationship be­
tween formal logic and databases a 
bit clearer for database practition­
ers. I have stated the goals that 
make using a logical system as the 
basis of database management ad­
vantageous, and presented the de­
sirable properties of this logical 
system in databas·e terminology. 
At the very least, I would hope 

I I I I I I I I I I I I I I I I I 
that database professionals will 
now be able to use some of these 
logical concepts in evaluating a re­
lational DBMS's strengths and 
weaknesses. While errors of imple­
mentation are sometimes to blame, 
the cause of many performance, 
data integrity, and maintenance 
problems lie in much more serious 
design flaws involving the failure 
to capitalize on the logical founda­
tion of relational theory. With ·a 
little practice, logical concepts will 
prove useful in identifying such 
database and application design 
problems. You can start by insist­
ing that RDBMS vendors meet the 
logical objectives outlined here. 

In Part II of this series, I will 
examine many-valued logics in the 
light of these objectives. We will 
find these logics lacking, and 
therefore unsuitable for represent­
ing and manipulating partial knowl-. 
edge in a database. • 
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